A Bipartite Graph with Non-Unimodal Independent Set Sequence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bipartite Graph with Non-Unimodal Independent Set Sequence

We show that the independent set sequence of a bipartite graph need not be unimodal.

متن کامل

The independent set sequence of regular bipartite graphs

Let it(G) be the number of independent sets of size t in a graph G. Alavi, Erdős, Malde and Schwenk made the conjecture that if G is a tree then the independent set sequence {it(G)}t≥0 of G is unimodal; Levit and Mandrescu further conjectured that this should hold for all bipartite G. We consider the independent set sequence of finite regular bipartite graphs, and graphs obtained from these by ...

متن کامل

A graph polynomial for independent sets of bipartite graphs

We introduce a new graph polynomial that encodes interesting properties of graphs, for example, the number of matchings, the number of perfect matchings, and, for bipartite graphs, the number of independent sets (#BIS). We analyse the complexity of exact evaluation of the polynomial at rational points and show a dichotomy result: for most points exact evaluation is #P-hard (assuming the general...

متن کامل

Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs

Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove...

متن کامل

A Sequence of Unimodal Polynomials

A finite sequence of real numbers {d0, d1, · · · , dm} is said to be unimodal if there exists an index 0 ≤ j ≤ m such that d0 ≤ d1 ≤ · · · ≤ dj and dj ≥ dj+1 ≥ · · · ≥ dm. A polynomial is said to be unimodal if its sequence of coefficients is unimodal. The sequence {d0, d1, · · · , dm} with dj ≥ 0 is said to be logarithmically concave (or log concave for short) if dj+1dj−1 ≤ dj for 1 ≤ j ≤ m − ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2013

ISSN: 1077-8926

DOI: 10.37236/3034